

3G TILING TRANSMITTER MANUAL

Revised 2020-01-10

Table of Contents

Introduction	1
Basic API	2
Set Video Layout	3
Set Primary Video	4
Set Primary Audio	4
Audio Indiator Enable/Disable	4
Transmitter Video Disable	5
Transmitter Video Enable	5
Function Buttons	5
Custom API	6
Video Positioning, Size, & Layering	7
Examples	9
Video Transparency/Opacity	
Video Esdo	10
Examples	

Introduction

The Just Add Power 3G+4+ Tiling Transmitter consists of 6 circuit-boards that work together to produce a tiled video signal: 4 Receivers, one Transmitter, and the Combiner.

The 4 Receivers accept video and audio signals from Just Add Power 3G Transmitters – in the same way that all Receivers do – and pass those signals to the Compiler. The Compiler arranges the video and audio signals and outputs the combined audio/video signal to the Transmitter, which outputs the video onto the network in the same way that all Transmitters do.

Adding a 3G+4+ Tiling Transmitter to a Just Add Power system allows all Receivers in the system to show tiled video.

Basic API

The Basic API includes standard video layouts, primary audio and video, and other basic settings. All commands are case-sensitive.

Access the Tiling Transmitter

To access the Basic API, telnet into the **<u>IP address of the TX</u>** in the 3G+4+ Tiling Transmitter.

Function List

- <u>Set Video Layout</u>
- <u>Set Primary Video</u>
- <u>Set Primary Audio</u>
- <u>Audio Indicator Enable/Disable</u>
- <u>Transmitter Video Disable</u>
- <u>Transmitter Video Enable</u>
- <u>Function Buttons</u>

Set Video Layout

Set the layout of the video signal output by the Transmitter

Command

_4in1_layout.sh X

Variable

- **x** = 1-4 or 10
 - 1 = Single-screen
 - 2 = 3 secondaries on right side
 - 3 = 3 secondaries on bottom
 - 4 = Quad view
 - 10 = Recall the last layout built with the Custom API

1 = Single-screen

2 = Secondary Video Right

4 = Quad View

Just Add <u>3G Tiling Transmitter -</u> BPower

Set Primary Video

Set which input Receiver will act as the primary video source Default is 1 Primary Video is indicated on the hardware by a blue light **Command** _4in1_primary_video.sh X

Variable

x = 1-4

Set Primary Audio

Set which position in the layout will act as the audio source → Default is 1 Primary Audio is indicated on the hardware by an orange light Command _4in1_focus.sh X Variable X = 1-4 according to the icons to the right →

Audio Indiator Enable/Disable

Toggle the audio indicator

Default is off

When set to 'off', any change in layout or primary audio will cause the indicator to appear for 2 seconds and disappear. **Command**

_4in1_focus_onoff.sh X

Variable

<mark>X</mark> = on

Enable the green border Example: _4in1_focus_onoff.sh on

<mark>X</mark>=off

Disable the green border (default) Example: _4in1_focus_onoff

Transmitter Video Disable

Stop the video output of the HDMI and Transmitter network port. Must be used for initial setup, as Holding PF1 for 3 seconds will also disable the TX video output.

Command

_4in1_stop_tx.sh

Transmitter Video Enable

Enable the video output of the HDMI and Transmitter network port. Power-cycling the 2G+4+ will return it to this state. **Command**

_4in1_restart_tx.sh

Function Buttons

- PF1: Tap to disable tiling Hold to disable HDMI output (during configuration)
- PF2: Tap to cycle primary audio
- PF3: Tap to cycle video layout
- PF4: Tap to cycle primary video

Custom API

The Custom API allows modification of video position, size, layering, transparency/opacity, and fade. All commands are case-sensitive.

Access the Tiling Transmitter

To access the Custom API, telnet into the **IP address of the TX** in the 3G+4+ Tiling Transmitter.

Function List

- Video Position, Size, & Layering
- <u>Video Transparency/Opacity</u>
- <u>Video Fade</u>

Video Positioning, Size, & Layering

Description

The p4p. sh command can modify the position, size, and layering of video signals – referred to here as Channels. Channels are not the same as Receivers. Channels reference the relation of a specific video input to the primary video input, where the Primary Video is always Channel 1. See the table below for matching:

When primary video is $ ightarrow$	Receiver 1	Receiver 2	Receiver 3	Receiver 4
Channel 1 is \rightarrow	Receiver 1	Receiver 2	Receiver 3	Receiver 4
Channel 2 is \rightarrow	Receiver 2	Receiver 3	Receiver 4	Receiver 1
Channel 3 is $ ightarrow$	Receiver 3	Receiver 4	Receiver 1	Receiver 2
Channel 4 is \rightarrow	Receiver 4	Receiver 1	Receiver 2	Receiver 3

Note: The command to set Primary Audio follows Channel numbers in the same way.

Command

p4p.sh [layer:ABCD] [chX] [hpos:HPOS] [vpos:VPOS] [width:WIDTH] [height:HEIGHT]

Options

- 1. layer:ABCD
 - Set the overlapping order for Channels 1-4 where they overlap. Not necessary if video does not overlap.
 - A,B,C,D are variables for Channels 1-4
 - Examples:
 - i. p4p.sh layer:1234
 - Sets the layering order as Channel 1 on top, Channel 2 underneath Channel 1, Channel 3 underneath Channels 1 & 2, and Channel 4 on the bottom
 - ii. p4p.sh layer:3142
 - Sets the layering order as Channel 3 on top, Channel 1 underneath Channel 3, Channel 4 underneath Channels 3 & 1, and Channel 2 on the bottom

2. ch<mark>x</mark>

- Choose the Channel that the subsequent hpos, vpos, width, and height commands will modify
- **x** is the variable for the Channel (1-4) to be modified
- The options hpos, vpos, width, and height can all be set in the same command, or a single option can be set. Unlisted options will not be changed.
- Multiple Channels can be modified in the same command
- Examples:
 - i. p4p.sh ch1 hpos:320 vpos:0 width:1280 height:720
 - Sets Channel 1 horizontal starting position to 320 pixels from the left side of the screen, vertical starting position to the top of the screen, with a width of 1280 pixels and height of 720 pixels. Channels 2-4 are unchanged.
 - ii. p4p.sh ch4 hpos:1280 vpos:720 width:640 height:360
 - Sets Channel 4 horizontal starting position to 1280 pixels from the left side of the screen, vertical starting position to 720 pixels from the top of the screen, with a width of 640 pixels and height of 360 pixels. Channels 1-3 are unchanged.

Just Add 3G Tiling Transmitter -

- 3. hpos:HPOS
 - Set the horizontal pixel position of the top-left corner of the Channel
 - Custom layouts output at 1920x1080
 - i. Left side of the screen is pixel 0
 - ii. Right side of the screen is pixel 1920
 - Examples:
 - i. p4p.sh ch1 hpos:320
 - Sets Channel 1 horizontal starting position to 200 pixels from the left side of the screen
 - ii. p4p.sh ch4 hpos:1280
 - o Sets Channel 4 horizontal starting position to 1280 pixels from the left side of the screen
 - iii. p4p.sh ch1 hpos:320 ch4 hpos:1280
 - Sets Channel 1 horizontal starting position to 200 pixels from the left side of the screen and Channel 4 horizontal starting position to 1280 pixels from the left side of the screen in one command

4. vpos:VPOS

- Set the vertical pixel position of the top-left corner of the Channel
- Custom layouts output at 1920x1080
 - i. Top of the screen is pixel 0
 - ii. Bottom of the screen is pixel 1080
- Examples:
 - i. p4p.sh ch1 vpos:0
 - Sets Channel 1 vertical starting position to the top of the screen
 - ii. p4p.sh ch4 vpos:720
 - Sets Channel 4 vertical starting position to 720 pixels from the top of the screen
 - iii. p4p.sh ch1 vpos:0 ch4 vpos:720
 - Sets Channel 1 vertical starting position to the top of the screen and Channel 4 vertical starting position to 720 pixels from the top of the screen in one command

5. width:WIDTH

- Set the horizontal pixel width of the Channel
- Custom layouts output at 1920x1080
- Examples:
 - i. p4p.sh ch1 width:1280
 - Sets Channel 1 horizontal width to 1280 pixels
 - ii. p4p.sh ch4 width:640
 - Sets Channel 4 horizontal width to 640 pixels
- 6. height:HEIGHT
 - Set the vertical pixel height of the Channel
 - Custom layouts output at 1920x1080
 - Examples:
 - i. p4p.sh ch2 height:720
 - Sets Channel 2 vertical height to 720 pixels
 - ii. p4p.sh ch3 height:360
 - Sets Channel 3 vertical height to 360 pixels
 - iii. p4p.sh ch2 height:720 ch3 height:360
 - Sets Channel 2 vertical height to 720 pixels and Channel 3 vertical height to 360 pixels in one command

Examples

1. Three on the right with proper aspect ratio

p4p.sh ch1 hpos:0 vpos:180 width:1280 height:720 ch2 hpos:1280 vpos:0 width:640 height:360 ch3 hpos:1280 vpos:360 width:640 height:360 ch4 hpos:1280 vpos:720 width:640 height:360

2. Three on bottom with proper aspect ratio

p4p.sh chl hpos:320 vpos:0 width:1280 height:720 ch2 hpos:0 vpos:720 width:640 height:360 ch3 hpos:640 vpos:720 width:640 height:360 ch4 hpos:1280 vpos:720 width:640 height:360

3. Three Columns

p4p.sh chl hpos:0 vpos:0 width:640 height:1080 ch2 hpos:640 vpos:0 width:640 height:1080 ch3 hpos:1280 vpos:0 width:640 height:1080 ch4 hpos:0 vpos:0 width:0

4. Left and Right

5. Top and Bottom

p4p.sh chl hpos:0 vpos:0 width:1920 height:540 ch2 hpos:0 vpos:540 width:1920 height:540 ch3_hpos:0 vpos:0 width:0 height:0 ch4 hpos:0 vpos:0 width:0 height:0

6. Sandwich

p4p.sh chl hpos:0 vpos:0 width:1920 height:270 ch2 hpos:0 vpos:270 width:960 height:540 ch3 hpos:960 vpos:270 width:960 height:540 ch4 hpos:0 vpos:810 width:1920 height:270

7. Picture-In-Picture

p4p.sh layer:2134 ch2 hpos:1280 vpos:720 width:640 height:360 ch1 hpos:0 vpos:0 width:1920 height:1080

p4p.sh layer:2314 chl hpos:0 vpos:0 width:1920 height:1080 ch2 hpos:80 vpos:315 width:800 height:450 ch3 hpos:1040 vpos:315 width:800 height:450

8. Ticker Overlay (ticker is 100 pixels at the bottom of the video)

p4p.sh layer:1234 ch1 hpos:0 vpos:0 width:1920 height:980 ch2 hpos:0 vpos:0 width:1920 height:1080

p4p.sh layer:1234 ch1 hpos:0 vpos:0 width:1920 height:880 ch2 hpos:0 vpos:0 width:1920 height:980 ch3 hpos:0 vpos:0 width:1920 height:1080

- 9. Centered Layouts
 - i. 2 videos, centered, maximum size, maintain aspect ratio

p4p.sh chl hpos:0 vpos:270 width:960 height:540 ch2 hpos:960 vpos:270 width:960 height:540 ch3 hpos:0 vpos:0 width:0 height:0 ch4 hpos:0 vpos:0 width:0 height:0

ii. 3 videos, centered, maximum size, maintain aspect ratio

p4p.sh chl hpos:0 vpos:0 width:960 height:540 ch2 hpos:960 vpos:0 width:960 height:540 ch3 hpos:480 vpos:540 width:960 height:540 ch4 hpos:0 vpos:0 width:0 height:0

10. Layer Demo

p4p.sh ch1 hpos:80 vpos:80 width:960 height:540 ch2 hpos:740 vpos:200 width:960 height:540 ch3 hpos:220 vpos:500 width:960 height:540 ch4 hpos:900 vpos:420 width:960 height:540

p4p.sh layer:1234


```
p4p.sh layer:2341
```



```
p4p.sh layer:3412
```


p4p.sh layer:4123

Multi-Tiler Examples

These layouts require more than one Tiling Transmitter. The end result is achieved by setting a Tiling Receiver to watch a different Tiling Transmitter.

1. 5 sources, centered, maximum size, maintain aspect ratio. Requires 2 Tiling Transmitters. On Tiler 1: set RX1-3 to watch three of the sources. Set RX4 to watch Tiler 2. On Tiler 2: set RX1-2 to watch two of the sources. RX3-4 will be invisible.

Tiler 1 View

Tiler 1 Command

p4p.sh layer:1234 chl hpos:0 vpos:120 width:640 height:360 ch2 hpos:640 vpos:120 width:640 height:360 ch3 hpos:1280 vpos:120 width:640 height:360 ch4 hpos:0 vpos:240 width:1920 height:1080

Tiler 2 Command

p4p.sh layer:1234 ch1 hpos:213 vpos:360 width:640 height:360 ch2 hpos:1067 vpos:360 width:640 height:360 ch3 hpos:0 vpos:0 width:0 height:0 ch4 hpos:0 vpos:0 width:0 height:0

2. 6 sources, centered, maximum size, maintain aspect ratio. Requires 2 Tiling Transmitters. On Tiler 1: set RX1-3 to watch three of the sources. Set RX4 to watch Tiler 2. On Tiler 2: set RX1-3 to watch three of the sources. RX4 will be invisible.

Tiler 1 View

Tiler 2 View

Tiler 1 Command

p4p.sh layer:1234 chl hpos:0 vpos:120 width:640 height:360 ch2 hpos:640 vpos:120 width:640 height:360 ch3 hpos:1280 vpos:120 width:640 height:360 ch4 hpos:0 vpos:240 width:1920 height:1080

Tiler 2 Command

p4p.sh layer:1234 ch1 hpos:0 vpos:360 width:640 height:360 ch2 hpos:640 vpos:360 width:640 height:360 ch3 hpos:1280 vpos:360 width:640 height:360 ch4 hpos:0 vpos:0 width:0 height:0

3. 9 sources in a 3x3 grid. Requires 3 Tiling Transmitters.

On Tiler 1: set Quad layout and set RX1-4 to watch four of the sources.

On Tiler 2: set RX1-3 to watch three of the sources. RX4 will be invisible.

On Tiler 3: set RX1-2 to watch two of the sources. Set RX3 to watch Tiler 1. Set RX4 to watch Tiler 2.

_4in1_layout.sh 4

Tiler 2 Command

p4p.sh layer:1234 ch1 hpos:0 vpos:360 width:640 height:360 ch2 hpos:640 vpos:360 width:640 height:360 ch3 hpos:1280 vpos:360 width:640 height:360 ch4 hpos:0 vpos:0 width:0 height:0

Tiler 3 Command

p4p.sh layer:1234 ch1 hpos:1280 vpos:0 width:640 height:360 ch2 hpos:1280 vpos:360 width:640 height:360 ch3 hpos:0 vpos:0 width:1280 height:720 ch4 hpos:0 vpos:360 width:1920 height:1080

Video Transparency/Opacity

Description

Transparency/opacity will overlay a picture-in-picture video over a background video and make the overlay video partially see-through.

Channel 1 is always the background video and Channel 2 is always the picture-in-picture video

Channels are not the same as Receivers. Channels reference the relation of a specific video input to the primary video input, where the Primary Video is always Channel 1. See the table below for matching:

When primary video is $ ightarrow$	Receiver 1	Receiver 2	Receiver 3	Receiver 4
Channel 1 is $ ightarrow$	Receiver 1	Receiver 2	Receiver 3	Receiver 4
Channel 2 is $ ightarrow$	Receiver 2	Receiver 3	Receiver 4	Receiver 1

Note: The command to set Primary Audio follows Channel numbers in the same way.

Command

_4in1_pop.sh hpos:HPOS vpos:VPOS width:WIDTH height:HEIGHT [opacity:O || transparency:T]

Variables

Note: Custom layouts output at 1920x1080

- 1. hpos: HPOS
 - Set the left starting pixel of the picture-in-picture Channel
 - 0 1920
- 2. vpos:VPOS
 - Set the top starting pixel of the picture-in-picture Channel
 - 0 1080
- 3. width:WIDTH
 - Set the pixel width of the picture-in-picture Channel
 - 0 1920
- 4. height:HEIGHT
 - Set the pixel height of the picture-in-picture Channel
 - 0 1080
- 5. opacity:0
 - Set the Opacity of the picture-in-picture Channel
 - Use either Opacity or Transparency; never both
 - 0-100
 - 0 is completely transparent
 - 100 is completely opaque
- 6. transparency:**T**
 - Set the Transparency of the picture-in-picture Channel
 - Use either Opacity or Transparency; never both
 - 0-100
 - 0 is completely opaque
 - 100 is completely transparent

Examples

1. Top left picture-in-picture at 75% Opacity

_4in1_pop.sh hpos:100 vpos:100 width:640 height:320 opacity:75

2. Full overlay picture-in-picture at 75% Transparency

_4in1_pop.sh hpos:0 vpos:0 width:1920 height:1080 transparency:75

Video Fade

Description

The p4p. sh command can fade between video signals – referred to here as Channels – where all four signals overlap. Channels are not the same as Receivers. Channels reference the relation of a specific video input to the primary video input, where the Primary Video is always Channel 1. See the table below for matching:

When primary video is $ ightarrow$	Receiver 1	Receiver 2	Receiver 3	Receiver 4
Channel 1 is \rightarrow	Receiver 1	Receiver 2	Receiver 3	Receiver 4
Channel 2 is $ ightarrow$	Receiver 2	Receiver 3	Receiver 4	Receiver 1
Channel 3 is $ ightarrow$	Receiver 3	Receiver 4	Receiver 1	Receiver 2
Channel 4 is $ ightarrow$	Receiver 4	Receiver 1	Receiver 2	Receiver 3

Note: The command to set Primary Audio follows Channel numbers in the same way.

Commands

- 1. _4in1_layout.sh 1
 - In order for fading to work, all Channels must completely overlap with each other
 - This command sets all channels to completely overlap with layering order of 1, 2, 3, 4
- 2. p4p.sh fade:AB#X
 - A & B are Channels. A is the Channel that begins the fade and B is the Channel that is being faded to.
 - X determines the number of fifths of a sec (0.2s) that the fade takes to complete

Examples

- o p4p.sh fade:12#10
 - Transition from Channel 1 to Channel 2 with a 2-second fade time
- o p4p.sh fade:42#5
 - Transition from Channel 4 to Channel 2 with a 1-second fade time